Преобразователь электрической энергии — Википедия с видео // WIKI 2

Особенности работы преобразователей напряжения различного характера и применения, их принципиальные схемы и ремонт.

Как устроен прибор

Для преобразования одного уровня напряжения в иное часто используют импульсные преобразователи напряжения с применением индуктивных накопителей энергии. Согласно этому известно три типа схем преобразователей:

  • Инвертирующие.
  • Повышающие.
  • Понижающие.

Общими для указанных видов преобразователей являются пять элементов:

  • Ключевой коммутирующий элемент.
  • Источник питания.
  • Индуктивный накопитель энергии (дроссель, катушка индуктивности).
  • Конденсатор фильтра, который включен параллельно сопротивлению нагрузки.
  • Блокировочный диод.

Включение указанных пяти элементов в разных сочетаниях дает возможность создать любой из перечисленных типов импульсных преобразователей.

Схема простого инвертора напряжения.

Схема простого инвертора напряжения.

Регулирование уровня выходящего напряжения преобразователя обеспечивается изменением ширины импульсов, которые управляют работой ключевого коммутирующего элемента. Стабилизация выходного напряжения создается методом обратной связи: изменение выходного напряжения создает автоматическое изменение ширины импульсов.

Типичным представителем преобразователя напряжения также является трансформатор. Он преобразует переменное напряжение одного значения в переменное напряжение другого значения. Данное свойство трансформатора широко применяется в радиоэлектронике и электротехнике.

Основные характеристики преобразователя напряжения

Таблица – Основные характеристики преобразователя напряжения.

Материал по теме: Что называют триггером в электронике.

Преимущества преобразователей напряжения

Преобразователь напряжения называют также инвертором. Для многих электрических приборов параметры электрического тока имеют большое значение. В случае отклонений от установленных параметров возможна поломка электрических приборов и устройств. И если скачки в сети носят постоянный характер, то кроме инвертора применяется стабилизатор напряжения.
Что такое преобразователи напряжения
Если сравнивать обычный генератор и преобразователь, то у последнего имеется ряд преимуществ:

  • Высокая экологичность устройства, поскольку электрическая энергия для преобразования накапливается в аккумуляторе. В отличие от генератора, инвертор не производит вредных выбросов в атмосферу;
  • Абсолютно бесшумная работа инвертора позволяет использовать его не только в частном доме, как электрогенератор, но и в квартире, практически, в любом месте;
  • В отличие от электрогенератора, преобразователь тока не нуждается в частом техническом обслуживании, то есть не требует дополнительных материальных затрат;
  • Время работы электрогенератора полностью зависит от количества топлива и моторесурса. Преобразователи способны самостоятельно поддерживать наивысший заряд аккумуляторов, при необходимости можно всегда установить дополнительные аккумуляторные батареи;
  • Инвертор, рассчитанный на 220 вольт, в случае исчезновения напряжения в сети, переключается автоматически и не требует, чтобы рядом с ним присутствовали люди.

Что какое преобразователь напряжения

Преобразователь – это электротехническое устройство, преобразующее электроэнергию одних параметров или показателей качества в электроэнергию с другими значениями параметров или показателей качества. Параметрами электрической энергии могут являться род тока и напряжения, их частота, число фаз, фаза напряжения. По степени управляемости преобразователи электрической энергии подразделяются на неуправляемые и управляемые. В управляемых преобразователях выходные переменные: напряжение, ток, частота — могут регулироваться.

По элементной базе преобразователи электроэнергии подразделяются на электромашинные (вращающиеся) и полупроводниковые (статические). Электромашинные преобразователи реализуются на основе применения электрических машин и в настоящее время находят относительно редкое применение в электроприводах. Полупроводниковые преобразователи могут быть диодными, тиристорными и транзисторными.

Что такое преобразователь напряжения

По характеру преобразования электроэнергии силовые преобразователи подразделяются на выпрямители, инверторы, преобразователи частоты, регуляторы напряжения переменного и постоянного тока, преобразователи числа фаз напряжения переменного тока.

В современных автоматизированных электроприводах применяются главным образом полупроводниковые тиристорные и транзисторные преобразователи постоянного и переменного тока. Достоинствами полупроводниковых преобразователей являются широкие функциональные возможности управления процессом преобразования электроэнергии, высокие быстродействие и КПД, большие сроки службы, удобство и простота обслуживания при эксплуатации, широкие возможности по реализации защит, сигнализации, диагностирования и тестирования как самого электрического привода, так и технологического оборудования.

Принцип работы преобразователя напряжения.

Принцип работы преобразователя напряжения.

Вместе с тем, для полупроводниковых преобразователей характерны и определенные недостатки. К ним относятся: высокая чувствительность полупроводниковых приборов к перегрузкам по току, напряжению и скорости их изменения, низкая помехозащищенность, искажение синусоидальной формы тока и напряжения сети.

Как отличается параллельное и последовательное соединение резисторов.

Читать далее

Масляные трансформаторы – что это такое, устройство и принцип работы.

Читать далее

Зачем мировой практике разные напряжения

Электрификация в массовом порядке велась с начала XX века. Участвовало великое количество людей, каждый преследовал, помимо объективных, собственные интересы. Эдисон продвигал постоянное напряжение, Тесла назло – переменное. Доливо-Добровольский имел основания недолюбливать второго ученого (конфликт интересов в сфере трёхфазных сетей), возможно, частоту 50 Гц ввел наперекор США, Европа прислушалась к мнению более близкого той окрестности инженера.

Что касается СССР, нет сомнений: вольтаж на 220 вольт оставлен только из военных, стратегических соображений противостояния в холодной войне. Диаметр сигареты соответствовал калибру патрона для скорейшего перевода оборудования на выпуск специфической продукции.

Области применения

Разделитель 100 амперный

Сфера применения многозонных преобразователей напряжения очень обширна. Они традиционно используются в следующих целях:

  • в линейных устройствах для распределения и передачи электроэнергии;
  • для проведения таких ответственных технологических операций, как сварка, термическая обработка и им подобных;
  • при необходимости электроснабжения нагрузочных цепей в самых различных областях техники.

В первом случае вырабатываемая на электростанциях ЭДС повышается с помощью этих устройств с 6-24 кВ до 110-220 кВ – в таком виде ее легче «перегонять» по проводам на дальние расстояния. На районных подстанциях уже другие трансформаторные устройства обеспечивают ее снижение сначала до 10 (6,3) кВ, а затем – до привычных 380 Вольт.

При обслуживании технологического оборудования преобразователи напряжения применяются в качестве электротермических установок или сварочных трансформаторов.

В промышленности

Самая обширная область применения – обеспечение качественным питанием следующих промышленных образцов потребителей:

  • аппаратуры, работающей в линиях автоматического управления и контроля;
  • устройств телекоммуникации и связи;
  • широкого спектра электроизмерительных приборов;
  • специального радио- и телевизионного оборудования и тому подобное.

Особую функцию выполняют так называемые «разделительные» трансформаторы, используемые для развязки нагрузочных линий от высоковольтного входа.

Поскольку такие преобразователи «играют вспомогательную роль», чаще всего они имеют небольшую мощность и сравнительно малые размеры.

В быту, медицине и оборонной промышленности

Преобразователь напряжения 24/12V DC-20

Достаточно широко применяются преобразователи напряжения и в быту. На их основе построено большинство БП, используемых для зарядки бытовой техники, а также более сложных устройств типа:

  • стабилизаторы напряжения;
  • инверторы;
  • резервные блоки питания и т. п.

Наиболее востребованы эти устройства в медицине, военной сфере, а также в энергетике и науке. В этих отраслях к ним предъявляются особо «жесткие» требования, касающиеся качества преобразуемого напряжения («чистоты» синусоиды, например).

Функции преобразователей

  • Преобразование
  • Преобразование и регулирование
  • Преобразование и стабилизация

Особенности применения

На данный момент подобное оборудование используется практически во всех отраслях промышленности и с каждым днем находит все большее применение в жизни каждого человека, в частности в составе оборудования легковых или грузовых автомобилей. Рабочая частота инверторов напряжения (преобразователей напряжения) не превышает ста килогерц. Плюс ко всему, преобразователь напряжения (инвертор напряжения) может использоваться как генератор. В принципе, генератор и инвертор достаточно схожи, однако не стоит считать, что данные виды оборудования одинаковы по назначению и по принципу действия.

Повышающий преобразователь.

Повышающий преобразователь.

В схемах генератора и преобразователя напряжения имеются существенные отличия. Кроме того, по сравнению с дизельным или бензиновым генератором инвертор напряжения (преобразователь напряжения) имеет целый ряд преимуществ, в частности:

  • инвертор напряжения (преобразователь напряжения) имеет значительно меньшие габариты и вес;
  • у инвертора напряжения (преобразователя напряжения) отсутствует необходимость постоянного контроля целого перечня параметров, обязательного при эксплуатации дизельных электростанций или бензиновых генераторов. Среди этих параметров уровень топлива, уровень и давление масла двигателя, температура и уровень охлаждающей жидкости. Все эти параметры, например, при работе инвертора напряжения (преобразователя напряжения) от автомобильного двигателя контролируются независимо, кроме того, при относительно маломощных потребителях (скажем, до 1000 Вт) длительное время включение автомобильного генератора вообще не требуется и, естественно, топливо не расходуется;
  • на холостом ходу инвертор напряжения (преобразователь напряжения) имеет просто мизерное потребление энергии (около 5 Вт), в отличие от дизельного или бензинового генератора, расходующих на холостом ходу до пятидесяти процентов от расхода при максимальной нагрузке;
  • отсутствие механического износа, соответственно, лучшая отказоустойчивость и больший ресурс работы;
  • колебание выходной частоты у инвертора напряжения (преобразователя напряжения) минимально и, как правило, не превышает сотых долей процента;
  • инвертор напряжения (преобразователь напряжения) экологичен (не шумит и не выделяет выхлопных газов) и позволяет подключать альтернативные источники энергии (например, и солнечные батареи или ветряные генераторы);
  • инвертор напряжения (преобразователь напряжения) может использоваться как пуско-зарядное устройство, как источник бесперебойного питания, как восстановитель аккумуляторов;
  • ну и, наконец, инвертор напряжения (преобразователь напряжения) просто существенно (до нескольких раз!) дешевле.
Популярные модели преобразователей напряжения

Таблица – Популярные модели преобразователей напряжения.

Перечень потенциальных пользователей инверторов напряжения (преобразователей напряжения) может быть очень широк. Здесь и производители разнообразных работ в удаленных условиях или при частых отключениях электричества, и любители отдыха на природе, желающие сохранить возможность пользования «благами цивилизации», и предусмотрительные собственники различных производств или охраняемых объектов и т.д. и т.п.

Материал по теме: Принципы работы мультиметра и особенности выбора.

В частности, очень большие плюсы дает использование инверторов напряжения (преобразователей напряжения) совместно с разными автономными источниками электропитания, одна экономия топлива чего стоит, а к нему еще и хранимый «запас электричества», так сказать, на всякий случай.

Правда, при выборе инверторов напряжения (преобразователей напряжения) необходимо помнить, что многие потребители электротока (особенно, холодильники и насосы) имеют пусковую мощность в несколько раз больше номинальной (обычно, можно посмотреть в паспорте устройства) и именно ее стоит брать за основу при расчете требуемого инвертора напряжения (преобразователя напряжения).

Преобразователь 24В в 12В

Преобразователь 24В в 12В

Преобразователи постоянного напряжения

Преобразователь переменного напряжения в постоянное является самым часто используемым видом устройства этого типа. В быту это всевозможные блоки питания, а на производстве и в промышленности это питающие устройства:

  • Всех полупроводниковых схем;
  • Обмоток возбуждения синхронных двигателей и двигателей постоянного тока;
  • Катушек соленоидов масляных выключателей;
  • Оперативных цепей и цепей отключения там, где катушки требуют постоянного тока.

Тиристорный преобразователь напряжения — это наиболее часто применяемый для этих целей аппарат. Особенностью этих устройств является полное, а не частичное, преобразование переменного напряжения в постоянное без всякого рода пульсаций. Мощный преобразователь напряжения такого типа обязательно должен включать в себя радиаторы и вентиляторы для охлаждения, так как все электронные детали могут работать долго и безаварийно, только при рабочих температурах.схема 5

Местоположение преобразователей напряжения в общей классификации

С позволения авторов Википедии приведем классификацию преобразователей электроэнергии различного рода, чтобы читатели понимали, где расположился объект сегодняшней беседы:

  • Постоянного тока:
  1. Преобразователи уровня напряжения (обсуждался выше).
  2. Регуляторы напряжения.
  3. Линейный стабилизатор напряжения.
Базовый регулятор линейного напряжения

Базовый регулятор линейного напряжения

  • Переменный ток в постоянный:
  1. Выпрямители.
  2. Блоки питания.
  3. Импульсные стабилизаторы напряжения.
  • Постоянный ток в переменный:
  1. Инверторы.
  • Переменного напряжения:
  1. Трансформаторы различного рода.
  2. Преобразователи напряжения.
  3. Регуляторы напряжения.
  4. Преобразователи формы и частоты напряжения.
  5. Трансформаторы переменной частоты.

Преобразователи напряжения образуют еще два класса. Блоки питания в первую очередь. Каждый содержит в своём составе преобразователь напряжения. Трансформатор. Преобразователи уровня подходят под отечественное определение предмета беседы, выделяются в отдельный класс. Вопрос ставится книгой М.А. Шустова по рассматриваемой теме.

Особенности резистивных преобразователей

Еще один распространенный тип девайсов — резистивные преобразователи. Рассмотрим их особенности подробнее.

Данные преобразователи приспособлены к изменению собственного электрического сопротивления при воздействии той или иной измеряемой величины. Также они могут осуществлять корректировку углового и линейного перемещения. Чаще всего данные преобразователи включаются в системы автоматизации с датчиками давления, температуры, уровня освещенности, измерения интенсивности различных видов излучения. Основные преимущества резистивных преобразователей:

— надежность;

— отсутствие зависимости между точностью проводимых измерений и стабильностью питающего напряжения.

Существует большое количество разновидностей соответствующих устройств. В числе самых популярных — датчики температуры. Изучим их особенности.

Использование преобразователей напряжения

Кому же, в первую очередь, требуются преобразователи тока:

  • При необходимости сохранения в рабочем состоянии системы отопления, в том случае, когда отключается электрическая сеть. То же самое касается холодильников и компьютеров. Преобразователь не только предотвратит выход электротехники из строя, но и обеспечит ее непрерывную работу;
  • Инвертор можно использовать не только в частном доме или в квартире, но и в полевых условиях, где при полном отсутствии электроэнергии он способен заменить электрогенератор;
  • Преобразователь тока бывает, незаменим в больницах, особенно при проведении операций и в стоматологических кабинетах;
  • Без инверторов не обойтись в магазинах, торгующих продовольственными товарами, а также на продуктовых складах, где выход из строя холодильников может очень дорого обойтись.

Высокочастотный преобразователь напряжения

За счёт применения повышающих преобразователей появляется возможность уменьшения габаритов всех электронных и электромагнитных элементов, из которых состоят схемы, а это значит снижается и стоимость трансформаторов, катушек, конденсаторов и т. д. Правда, это может вызывать высокочастотные радиопомехи, которые влияют на работу других электронных систем, да и обычных радиоприёмников, поэтому нужно надёжно экранировать их корпуса. Расчет преобразователя и его помех должен производиться высококвалифицированным персоналом.

Что такое преобразователь сопротивления в напряжение?
Это особый вид, который используется только при производстве и изготовлении измерительных приборов, в частности, омметров. Ведь основа омметра, то есть прибора измеряющего сопротивление, выполнена в измерении падения U и преобразовании его в стрелочные или цифровые показатели. Обычно измерения производятся относительно постоянного тока. Измерительный преобразователь — техническое средство, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации, а также передачи. Он входит в состав какого-либо измерительного прибора.

Ремонт прибора

Ремонт этих устройств для преобразования одного вида напряжения в другой, лучше производить в сервисных центрах, где персонал имеет высокую квалификацию и впоследствии предоставит гарантии выполненных работ. Чаще всего любые современные качественные преобразователи состоят из нескольких сотен электронных деталей и если нет явных сгоревших элементов, то найти поломку и устранить её будет очень сложно.

Некоторые же китайские недорогие устройства данного типа, вообще, в принципе лишены возможности их ремонта, чего нельзя сказать об отечественных производителях. Да может они немного громоздкие и не компактные, но зато подлежат ремонту, так как многие из их деталей можно заменить на аналогичные.

Примечания

  1. ГОСТ Р 50369-92 Электроприводы. Термины и определения
  2. С. Ю. Забродин. Глава 5 Маломощные выпрямители постоянного тока, §5.1 Общие сведения // Промышленная электроника: учебник для вузов. — М.: Высшая школа, 1982. — С. 287. — 496 с.

  3. С. Ю. Забродин. Глава 6 Ведомые сетью преобразователи средней и большой мощности, §6.1 общие сведения // Промышленная электроника: учебник для вузов. — М.: Высшая школа, 1982. — С. 315. — 496 с.

  4. С. Ю. Забродин. Глава 8 Автономные инверторы, §8.1 Автономные инверторы и их классификация // Промышленная электроника: учебник для вузов. — М.: Высшая школа, 1982. — С. 438. — 496 с.

Это заготовка статьи об электричестве. Вы можете помочь проекту, дополнив её.

Преобразователь тока в напряжение

В большинстве случаев все электронные схемы нужны для обработки сигналов, представленных в виде напряжения. Однако иногда приходится иметь дело с сигналом в виде тока. Такие сигналы возникают, например, на выходе фоторезистора или фотодиода. Тогда желательно при первой же возможности преобразовать токовый сигнал в напряжение. Преобразователи напряжения в ток применяются в случае, когда ток в нагрузке должен быть пропорционален входному U и не зависеть от R нагрузки. В частности, при постоянном входном U ток в нагрузке также будет постоянным, поэтому такие преобразователи иногда условно называют стабилизаторами тока.

Конструкция и принцип действия

Основным элементом для некоторых модификаций прибора является блок бесперебойного питания. Работа его заключается в поддержании в сети нужного напряжения за счет аккумулятора. При отключении электричества ББП работает от батареи, причем, вырабатываемое ей электричество поступает в инвертор и с него на электроприбор.

Схема подключения

Кроме этого в комплектацию преобразователя напряжения входит зарядное устройство, от которого происходит подзарядка аккумуляторов. И еще одним элементом преобразователя напряжения-частоты является микроконтроллер. Он контролирует параметры напряжения и в зависимости от этого дает команду на отключение или подключение батареи.

Особенности тиристорного управления

Тиристоры в качестве коммутирующих элементов характеризуются тем, что могут использоваться исключительно в качестве ключей. Каталог номенклатуры тиристоров отличается тем, что большинство элементов в нем не требует постоянной подачи управляющего сигнала. Здесь используется свойство тиристоров сохранять открытое состояние после снятия управления. Запирание происходит только тогда, когда ток через элемент снижается ниже определенного уровня, или происходит смена полярности напряжения на аноде и катоде.

Не дожидаться смены полярности или уменьшения тока можно, применяя специальные запираемые тиристоры, которые запираются путем подачи сигнала на управляющий электрод.

Любой тиристорный преобразователь отличается высоким уровнем искажения формы напряжения. Также в момент переключения возникают импульсы электромагнитных помех, для уменьшения уровня которых требуется использование дополнительных схемных решений (коммутация в момент перехода напряжения через нуль, установка помехоподавляющих фильтров).

Искажение формы сигнала

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...