Всё про термопары: принцип действия, схемы, таблица типов термопар и т.д.

Термопары — это наиболее распространенное устройство для измерения температуры. Они генерируют напряжение при нагревании и возникающий ток позволяет проводить измерения.

Содержание

Устройство термопары

Принцип работы термопары. Эффект Зеебека

Работа термопары обусловлена возникновением термоэлектрического эффекта, открытым немецким физиком Томасом Зеебеком (Tomas Seebeck) в 1821 г.

Явление основано на возникновении электричества в замкнутом электрическом контуре при воздействии определенной температуры окружающей среды. Электрический ток возникает при наличии разницы температур между двумя проводниками (термоэлектродами) различного состава (разнородных металлов или сплавов) и поддерживается сохранением места их контактов (спаев). Устройство выводит на экран подсоединенного вторичного прибора значение измеряемой температуры.

Что такое термопара, принцип действия, основные виды и типы

Выдаваемое напряжение и температура находятся в линейной зависимости. Это означает, что увеличение измеряемой температуры приводит к большему значению милливольт на свободных концах термопары.

Находящийся в точке измерения температуры спай называется «горячим», а место подключения проводов к преобразователю — «холодным».

Компенсация температуры холодного спая (КХС)

Компенсация холодного спая (КХС) – это компенсация, вносимая в виде поправки в итоговые показания при измерении температуры в точке подсоединения свободных концов термопары. Это связано с расхождениями между реальной температурой холодных концов с вычисленными показаниями градуировочной таблицы для температуры холодного спая при 0°С.

Что такое термопара, принцип действия, основные виды и типы

КХС является дифференциальным способом, при котором показания абсолютной температуры находятся из известного значения температуры холодного спая (другое название эталонный спай).

Конструкция термопары

При конструировании термопары учитывают влияние таких факторов, как «агрессивность» внешний среды, агрегатное состояние вещества, диапазон измеряемых температур и другие.

Что такое термопара, принцип действия, основные виды и типы

Особенности конструкции термопар:

1) Спаи проводников соединяются между собой скруткой или скруткой с дальнейшей электродуговой сваркой (редко пайкой).

ВАЖНО: Не рекомендуется использовать способ скручивания из-за быстрой потери свойств спая.

2) Термоэлектроды должны быть электрически изолированы по всей длине, кроме точки соприкосновения.

3) Способ изоляции подбирается с учетом верхнего температурного предела.

  • До 100-120°С – любая изоляция;
  • До 1300°С – фарфоровые трубки или бусы;
  • До 1950°С – трубки из Al2O3;
  • Свыше 2000°С – трубки из MgO, BeO, ThO2, ZrO2.

4) Защитный чехол.

Что такое термопара, принцип действия, основные виды и типы

Материал должен быть термически и химически стойким, с хорошей теплопроводностью (металл, керамика). Использование чехла предотвращает коррозию в определенных средах.

Удлиняющие (компенсационные) провода

Что такое термопара, принцип действия, основные виды и типы

Данный вид проводов необходим для удлинения концов термопары до вторичного прибора или барьера. Провода не используются в случае наличия у термопары встроенного преобразователя с унифицированным выходным сигналом. Наиболее широкое применение получил нормирующий преобразователь, размещенный в стандартной клеммной головке датчика с унифицированным сигналом 4-20мА, так называемая «таблетка».

Что такое термопара, принцип действия, основные виды и типы

Материал проводов может совпадать с материалом термоэлектродов, но чаще всего заменяется на более дешевый с учетом условий, предотвращающих образования паразитных (наведенных) термо-ЭДС. Применение удлиняющих проводов также позволяет оптимизировать производство.

Лайфхак! Для правильного определения полярности компенсационных проводов и их подключения к термопаре запомните мнемоническое правило ММ — минус магнитится. То есть берём любой магнит и минус у компенсации будет магнитится, в отличии от плюса.

Что такое термопара

Термопары существуют благодаря такому явлению, как контактная разность потенциалов. Если два разных твердых проводника или полупроводника привести в плотный контакт друг с другом, то в окрестности места их соприкосновения образуются разделенные электрические заряды. При этом на внешних концах данных проводников возникнет разность потенциалов. Эта разность потенциалов окажется равна разности работ выхода для каждого металла, поделенной на заряд электрона.

Зачем нужен вольтметр при подборе термопары?

Вольтметром измерить контактную разность потенциалов не удастся, однако на вольт-амперной характеристике она себя проявит, так например она проявляет себя в транзисторе и в диоде на p-n переходе.

Понятно, что если сомкнуть такую пару в кольцо, то результирующая ЭДС будет равна нулю, а если с одной стороны ее все же оставить разомкнутой, то будет иметь место реальная ЭДС, величиной от десятых долей вольта до единиц вольт, в зависимости от того, что это за материалы.

Дополнительный материал: Как смастерить лабораторный блок питания самостоятельно.

Суть в том, что при соприкосновении, к примеру, двух металлов, система выходит из равновесия потому что химические потенциалы этих двух металлов не равны друг другу, в результате происходит диффузия электронов в сторону уменьшения их энергии, что в свою очередь приводит к изменению заряда и электрического потенциала приведенных в контакт металлов. Так в приконтактной области начинается рост электрического поля, и как следствие мы имеем то, что имеем.

Если теперь снова рассмотреть два этих проводника из разных металлов, только замкнутых в кольцо, когда суммарная ЭДС по замкнутому контуру станет равна нулю, то здесь получится два контактных места. Назовем эти места спаями. Итак, есть два спая двух разных проводников. Что если попробовать подогреть один из спаев, а второй оставить при комнатной температуре? Очевидно, что поскольку соединенные металлы разные, и в каждом спае присутствует контактная разность потенциалов, то спаи будут испытывать разное отклонение ЭДС, находясь при разных температурах.

Принцип работы термопары.

Принцип работы термопары.

Эксперимент доказывает, что разность потенциалов между спаями будет пропорциональна разности их температур, так что можно ввести коэффициент пропорциональности, который называют термо-ЭДС. Для различных термопар термо-ЭДС будет разной. Если в разрезе такого кольца измерить напряжение, то в определенном интервале температур оно окажется почти строго пропорционально разности температур спаев. И даже если оставить только один спай (как на рисунке), и лишь его подогревать, а напряжение измерять между двумя концами, находящимися при одной и той же комнатной температуре, то все равно можно обнаружить очень четкую зависимость ЭДС от текущей температуры спая.

Чем отличаются параллельное и последовательное соединение конденсаторов.

Читать далее

Металлоискатель пират своими руками подробная инструкция.

Читать далее

Что такое подстроечный резистор: описание устройства и область его применения.

Читать далее

Так и работают термопары. Описанное явление относится к термоэлектрическим, а сам эффект, на базе которого работают все термопары, называется эффектом Зеебека, в честь его первооткрывателя — Томаса Зеебека. Сегодня можно встретить промышленные термопары, у которых, в зависимости от требуемого измеряемого диапазона температур, электроды изготавливают из специально подобранных сплавов.

Что такое термопара: об устройстве простыми словами

К примеру термопары из сплавов хромель и алюмель имеют коэффициент термо-ЭДС, равный 40 микровольт на °C, и предназначены для измерения температур в диапазоне от 0 до +1100°C. А пара медь-константан, столь популярная в качестве демонстрационного пособия, позволяет измерять температуры от -185 до +300°C.

Типы и виды термопар

Многообразие термопар объясняется различными сочетаниями используемых сплавов металлов. Подбор термопары осуществляется в зависимости от отрасли производства и необходимого температурного диапазона.

Что такое термопара, принцип действия, основные виды и типы

Термопара хромель-алюмель (ТХА)

Положительный электрод: сплав хромель (90% Ni, 10% Cr).
Отрицательный электрод: сплав алюмель (95% Ni, 2% Mn, 2% Al, 1% Si).

Изоляционный материал: фарфор, кварц, окиси металлов и т.д.

Диапазон температур от -200°С до 1300°С кратковременного и 1100°С длительного нагрева.

Рабочая среда: инертная, окислительная (O2=2-3% или полностью исключено), сухой водород, кратковременный вакуум. В восстановительной или окислительно-восстановительной атмосфере в присутствии защитного чехла.

Недостатки: легкость в деформировании, обратимая нестабильность термо-ЭДС.

Возможны случаи коррозии и охрупчивания алюмеля в присутствии следов серы в атмосфере и хромеля в слабоокислительной атмосфере («зеленая глинь»).

Термопара хромель-копель (ТХК)

Что такое термопара, принцип действия, основные виды и типы

Положительный электрод: сплав хромель (90% Ni, 10% Cr).
Отрицательный электрод: сплав копель (54,5% Cu, 43% Ni, 2% Fe, 0,5% Mn).

Диапазон температур от -253°С до 800°С длительного и 1100°С кратковременного нагрева.

Рабочая среда: инертная и окислительная, кратковременный вакуум.

Недостатки: деформирование термоэлектрода.

Возможно испарение хрома при длительном вакууме; реагирование с атмосферой, содержащей серу, хром, фтор.

Термопара железо-константан (ТЖК)

Положительный электрод: технически чистое железо (малоуглеродистая сталь).
Отрицательный электрод: сплав константан (59% Cu, 39-41% Ni, 1-2% Mn).

Используется для проведения измерений в восстановительных, инертных средах и вакууме. Температура от -203°С до 750°С длительного и 1100°С кратковременного нагрева.

Применение складывается на совместном измерении положительных и отрицательных температур. Невыгодно использовать только для отрицательных температур.

Недостатки: деформирование термоэлектрода, низкая коррозийная стойкость.

Изменение физико-химических свойств железа около 700°С и 900 °С. Взаимодействует с серой и водными парами с образованием коррозии.

Что такое термопара, принцип действия, основные виды и типы

Термопара вольфрам-рений (ТВР)

Положительный электрод: сплавы ВР5 (95% W, 5% Rh)/ВАР5 (BP5 с кремнещелочной и алюминиевой присадкой)/ВР10 (90% W, 10% Rh).
Отрицательный электрод: сплавы ВР20 (80% W, 20% Rh).

Изоляция: керамика из химически чистых окислов металлов.

Отмечается механическая прочность, термостойкость, малая чувствительность к загрязнениям, легкость изготовления.

Измерение температур от 1800°С до 3000°С, нижний предел – 1300°С. Измерения проводятся в среде инертного газа, сухого водорода или вакуума. В окислительных средах только для измерения в быстротекущих процессах.

Недостатки: плохая воспроизводимость термо-ЭДС, ее нестабильность при облучении, непостоянная чувствительность в температурном диапазоне.

Термопара вольфрам-молибден (ВМ)

Положительный электрод: вольфрам (технически чистый).
Отрицательный электрод: молибден (технически чистый).

Изоляция: глиноземистая керамика, защита кварцевыми наконечниками.

Инертная, водородная или вакуумная среда. Возможно проведение кратковременных измерений в окислительных средах в присутствии изоляции. Диапазон измеряемых температур составляет 1400-1800°С, предельная рабочая температура порядка 2400°С.

Недостатки: плохая воспроизводимость и чувствительность термо-ЭДС, инверсия полярности, охрупчивание при высоких температурах.

Термопары платинородий-платина (ТПП)

Положительный электрод: платинородий (Pt c 10% или 13% Rh).
Отрицательный электрод: платина.

Изоляция: кварц, фарфор (обычный и огнеупорный). До 1400°С — керамика с повышенным содержанием Al2O3, свыше 1400°С — керамику из химически чистого Al2O3.

Предельная рабочая температура 1400°С длительно, 1600°С кратковременно. Измерение низких температур обычно не производят.

Рабочая среда: окислительная и инертная, восстановительная в присутствии защиты.

Недостатки: высокая стоимость, нестабильность при облучении, высокая чувствительность к загрязнениям (особенно платиновый электрод), рост зерен металла при высоких температурах.

Что такое термопара, принцип действия, основные виды и типы

Термопары платинородий-платинородий (ТПР)

Положительный электрод: сплав Pt c 30% Rh.
Отрицательный электрод: сплав Pt c 6% Rh.

Среда: окислительная, нейтральная и вакуум. Использование в восстановительных и содержащих пары металлов или неметаллов средах в присутствии защиты.

Максимальная рабочая температура 1600°С длительно, 1800°С кратковременно.

Изоляция: керамика из Al2O3 высокой чистоты.

Менее подвержены химическим загрязнениям и росту зерна, чем термопара платинородий-платина.

Железо-константановые

  • Достоинством стала низкая стоимость.Нельзя применять при температуре менее ноля градусов, так как на металлическом выводе влага создает коррозию.После термического старения показатели измерений возрастают.Наибольшая допустимая температура использования +500 градусов, при более высокой температуре выводы очень быстро окисляются и разрушаются.Железо-константановый вид является наиболее подходящим для вакуумной среды.

Особенности работы с термопарами для точных и высокоточных измерений

  1. Недостаток большинства термопар – это необходимость градуировки каждого прибора в отдельности.

    Для точных измерений на предприятиях-изготовителях каждая термопара проходит отдельные испытания.

  2. Необходимо вносить поправку на температуру среды измерительных устройств.
  3. Термопара должна находиться в одинаковых условиях по всей длине измерительного участка.
  4. Для определения наиболее точного результата можно использовать рядом с основной термопарой контрольные термопары.
  5. Для точных измерений используют провода с экранами, для уменьшения наводок: токи, вызываемые термо-ЭДС, незначительны по своей величине.

Ещё одно интересное видео о термопарах смотрите ниже:

Схема подключения термопары

Что такое термопара, принцип действия, основные виды и типы
  • Подключение потенциометра или гальванометра непосредственно к проводникам.
  • Подключение с помощью компенсационных проводов;
  • Подключение обычными медными проводами к термопаре, имеющей унифицированный выход.

Что такое термопара, принцип действия, основные виды и типы

Хромель-константановые

  • Способны работать при пониженных температурах.Материалы электродов обладают термоэлектрической однородностью.Их достоинство – повышенная чувствительность.

Трудности измерении температур термопарой

Малый сигнал на выходе

Напряжение крайне мало, и поэтому требуется дополнительное усиление сигнала. Измерительные схемы для термопары очень сложны, потому как требуется сверх точное усиление сигнала. Для таких целей изготовляются специальные микросхемы, с помощью которых можно соорудить достаточно компактный измеритель температуры.

Компенсация эталонного спая

Первые, в своем роде, термопары погружали эталонным спаем в ванну со льдом, что бы температура была постоянной. Но сейчас это не подходит современным системам измерения, хотя поддержание температуры спая все равно необходимо. В данный момент используют технологию компенсации эталонного спая. Для этих целей применяется другой термочувствительный элемент. Например — термисторы, резистивные датчики или удаленные термодиоды.

Нелинейность характеристики

Характеристика напряжения термопары не линейна, и изменяет наклон в зависимости от величины сигнала. Есть такие способы решения проблемы:

  • Аппроксимировать наклон как линейный (особенно хорошо работает для термопар К- и -J типа);
  • Соотнести набор напряжений термопары с ее относительной температурой, путем сохранения характеристики в памяти просмотровой таблицы;
  • Моделировать поведение термопары уравнениями высокого порядка.

В зависимости от используемой пары материалов термопары делят на:

  • Чистый метал;
  • Сплав.

Точность измерения

Точность зависит от вида термопары, диапазона измеряемых температур, чистоты материала, электрических шумов, коррозии, свойств спая и процесса изготовления.

Термопарам присуждается класс допуска (стандартный или специальный), устанавливающий доверительный интервал измерений.

ВАЖНО: Характеристики на момент изготовления меняются в период эксплуатации.

Измерение высоких температур

Если Вы измеряете в среднем (400-1500 °С) или высоком (1600-2500 °С) диапазоне температур, то в этом случае применяются защита в виде чехла из огнеупорных материалов. Высокая плотность и термостойкость – вот те требования, которые применяться к защите.

Достоинства:

  • — надежность;
  • — отсутствует саморазогрев;
  • — дешевизна;
  • — высокая точность;
  • — широкий температурный диапазон.

Недостатки:

  • -сложность обработки сигнала;
  • — подверженность коррозиям;
  • — подверженность помехам;
  • — малая чувствительность (порядку 0,1 мВ/°К);
  • — высокое исходное сопротивление;
  • — необходимость поддержки.

Быстродействие измерения

Быстродействие обуславливается способностью первичного преобразователя быстро реагировать на скачки температуры и следующим за ними потоком входных сигналов измерительного прибора.

Что такое термопара, принцип действия, основные виды и типы

Факторы, увеличивающие быстродействие:

  1. Правильная установка и расчет длины первичного преобразователя;
  2. При использовании преобразователя с защитной гильзой необходимо уменьшить массу узла, подобрав меньший диаметр гильз;
  3. Сведение к минимуму воздушного зазора между первичным преобразователем и защитной гильзой;
  4. Использование подпружиненного первичного преобразователя и заполнения пустот в гильзе теплопроводящим наполнителем;
  5. Быстро движущаяся среда или среда с большей плотностью (жидкость).

Рекомендации по эксплуатации

Точность и целостность системы измерений на основе термопарного датчика может быть увеличена, если соблюдать определенные условия. Не допускать вибраций и механических натяжений термопарных проводников. При применении миниатюрной термопары из тонкой проволоки. Необходимо применять ее только в контролируемом месте, а за этим местом следует применять удлинительные проводники. Рекомендуется применять проволоку большого диаметра, не изменяющую температуру измеряемого объекта. Использовать термодатчик только в интервале рабочих температур.

Градуировка и проверка термопар

Таблица – Градуировка и проверка термопар.

Избегать резких перепадов температуры по длине термодатчика. При работе с длинными термодатчиками и удлинительными проводниками, необходимо соединить экран вольтметра с экраном провода. Для вспомогательного контроля и температурной диагностики используют специальные температурные датчики с 4-мя термоэлектродами, позволяющими выполнять вспомогательные температурные измерения, сопротивления, напряжения, помех для проверки надежности и целостности термопар.

Проводить электронную запись событий и постоянно контролировать величину сопротивления термоэлектродов. Применять удлиняющие проводники в рабочем интервале и при наименьших перепадах температур. Применять качественный защитный чехол для защиты термопарных проводников от вредных условий.

Таблица сравнения термопар

Выше мы рассмотрели типы термоэлектрических преобразователей. У читателя, скорее всего, резонно возник вопрос: Почему так много типов термопар существует?

Дело в том, что заявленная производителем точность измерений возможна только в определённом интервале температур. Именно в этом диапазоне производитель гарантирует линейную характеристику своего изделия. В других диапазонах зависимость напряжения от температуры может быть нелинейной, а это обязательно отобразится на точности. Следует учитывать, что материалы обладают разной степенью плавкости, поэтому для них существует предельное значение рабочих температур.

Для сравнения термопар составлены таблицы, в которых отображены основные параметры измерительных преобразователей. В качестве примера приводим один из вариантов таблицы для сравнения распространённых термопар.

Таблица 1.

<td>0; +1820−250; +400−40; +900

Тип термопары K J N R S B T E
Материал положительного электрода Cr—Ni Fe Ni—Cr—Si Pt—Rh (13 % Rh) Pt—Rh (10 % Rh) Pt—Rh (30 % Rh) Cu Cr—Ni
Материал отрицательного электрода Ni—Al Cu—Ni Ni—Si—Mg Pt Pt Pt—Rh (6 % Rh Cu—Ni Cu—Ni
Температурный коэффициент 40…41 55.2 68
Рабочий температурный диапазон, ºC 0 до +1100 0 до +700 0 до +1100 0 до +1600 0 до 1600 +200 до +1700 −185 до +300 0 до +800
Значения предельных температур, ºС −180; +1300 −180; +800 −270; +1300 – 50; +1600 −50; +1750
Класс точности 1, в соответствующем  диапазоне температур, (°C) ±1,5 от −40 °C до 375 °C ±1,5 от −40 °C до 375 °C ±1,5 от −40 °C до 375 °C ±1,0 от 0 °C до 1100 °C ±1,0 от 0 °C до 1100 °C ±0,5 от −40 °C до 125 °C ±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 1000 °C ±0,004×T от 375 °C до 750 °C ±0,004×T от 375 °C до 1000 °C ±[1 + 0,003×(T − 1100)] от 1100 °C до 1600 °C ±[1 + 0,003×(T − 1100)] от 1100 °C до 1600 ° ±0,004×T от 125 °C до 350 °C ±0,004×T от 375 °C до 800 °C
Класс точности 2 в соответствующем  диапазоне температур, (°C) ±2,5 от −40 °C до 333 °C ±2,5 от −40 °C до 333 °C ±2,5 от −40 °C до 333 °C ±1,5 от 0 °C до 600 °C ±1,5 от 0 °C до 600 °C ±0,0025×T от 600 °C до 1700 °C ±1,0 от −40 °C до 133 °C ±2,5 от −40 °C до 333 °C
±0,0075×T от 333 °C до 1200 °C ±0, T от 333 °C до 750 °C ±0,0075×T от 333 °C до 1200 °C ±0,0025×T от 600 °C до 1600 °C ±0,0025×T от 600 °C до 1600 °C ±0,0075×T от 133 °C до 350 °C ±0,0075×T от 333 °C до 900 °C
Цветовая маркировка выводов по МЭК Зелёный — белый Чёрный — белый Сиреневый — белый Оранжевый — белый Оранжевый — белый Отсутствует Коричневый — белый Фиолетовый — белый

Варианты спаев

Спаи создаются с разными определёнными конфигурациями под конкретные назначения термопар. Есть 1 и 2-элементные варианты, с заземлением на корпус защитной капсулы или без такового.

Варианты спаев

Заземление на корпус (не всегда оно есть) уменьшает инерционность термопары, а это улучшает быстродействие сенсора и точность в реальном времени. Также для достижения лучшей эффективности некоторые модели имеют горячий спай снаружи защитной колбы (кожуха, корпуса).

Термопара-зонд

Преимущества

  1. Прочность и надежность конструкции.Простой процесс изготовления.Спай датчика можно заземлять или соединять с объектом измерения.Широкий интервал эксплуатационных температур, что позволяет считать термоэлектрические датчики наиболее высокотемпературными из контактных видов.

См. также

  • Термометр сопротивления
  • Термистор
  • Биметаллическая пластина
  • Манометрический термометр
  • Пирометр
  • Спиновый эффект Зеебека

Проверка работоспособности термопары

Для проверки работоспособности подключают специальный измерительный прибор (тестер, гальванометр или потенциометр) или измеряют напряжение на выходе милливольтметром. При наличии колебаний стрелки или цифрового индикатора термопара является исправной, в противном случае устройство подлежит замене.

Что такое термопара, принцип действия, основные виды и типы

Причины выхода из строя термопары:

  1. Неиспользование защитного экранирующего устройства;
  2. Изменение химического состава электродов;
  3. Окислительные процессы, развивающиеся при высоких температурах;
  4. Поломка контрольно-измерительного прибора и т.д.

Какая связь между электричеством и теплом?

Вы заметили, что, когда мы говорим о проводимости в физике, мы можем иметь в виду две вещи? Иногда мы имеем в виду тепло, а иногда — электричество. Металл, такой как железо или золото, действительно хорошо проводит тепло и электричество; такой материал, как пластик, не очень хорошо проводит ни одно из них.

Между тем, как металл проводит тепло, и тем, как он проводит электричество, существует прямая связь.

Электрический ток проходит через металлы крошечными заряженными частицами внутри атомов, называемыми электронами. Когда электроны «маршируют» через материал, они уносят с собой электричество, как муравьи, несущие листья. Если электроны могут переносить электрическую энергию через металл, они также могут переносить тепловую энергию — и поэтому металлы, которые хорошо проводят электричество, также являются хорошими проводниками тепла. (Однако с неметаллами все не так просто, потому что тепло проходит через них другими, более сложными способами. Но для понимания термопар нам нужно учитывать только металлы.)

Погрешность измерений

Правильность температурных показателей, получаемых с помощью термопары, зависит от материала контактной группы, а также внешних факторов. К последним можно отнести давление, радиационный фон либо иные причины, способные повлиять на физико-химические показатели металлов, из которых изготовлены контакты.

состоит из следующих составных частей:

  • случайная погрешность, вызванная особенностями изготовления термопары;

  • погрешность, вызванная нарушением температурного режима «холодного» контакта;

  • погрешность, причиной которой послужили внешние помехи;

  • погрешность контрольной аппаратуры.

Измерение температуры с помощью термопары

Если вы измеряете несколько известных температур с помощью этого устройства с металлическим спаем, вы можете выяснить формулу — математическое соотношение, — которое связывает ток и температуру. Это называется калибровкой: это как разметка шкалы на термометре. После калибровки у вас есть инструмент, который можно использовать для измерения температуры всего, что вам нравится.

Просто поместите один из металлических концов в ванну со льдом (или что-нибудь еще с точно известной температурой). Поместите другой металлический стык на предмет, температуру которого вы хотите узнать. Теперь измерьте происходящее изменение напряжения и, используя формулу, которую вы вычислили ранее, вы можете точно рассчитать температуру вашего объекта. Гениально! У нас есть пара металлов, которые соединены для измерения тепла (что по-гречески называлось «термос»). Вот почему это называется термопарой.

Что такое термопары на практике?

Для различных применений доступен широкий спектр различных термопар на основе металлов с высокой проводимостью, таких как железо, никель, медь, хром, алюминий, платина, родий и их сплавы . Иногда конкретная термопара выбирается исключительно потому, что она точно работает в определенном диапазоне температур, но условия, в которых она работает, также могут влиять на выбор (например, материалы в термопаре могут быть немагнитными , некоррозионными или стойкими к атакам. отдельными химическими веществами).

Конструкция

По конструкции термопары бывают:

1.

С изолированным слоем. У этих термопар обеспечена электрическая изоляция рабочего слоя от земли. Для этих термопар изоляция входа измерительного устройства от земли не имеет значения.

2.

С неизолированным слоем. Эти термопары могут быть подключены лишь к тем измерительным устройствам, входы которых изолированы от земли. В противном случае появятся два дополнительных замкнутых контура, что приведет к сбоям показаний прибора.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...